Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz

Author:

Suki B.1,Habib R. H.1,Jackson A. C.1

Affiliation:

1. Department of Biomedical Engineering, Boston University, Massachusetts 02215.

Abstract

Propagation of waves in the airways is important in flow limitation as well as in oscillation mechanics. In five excised calf tracheae, we measured phase propagation velocity (c) and input impedance with open (Zop) or closed end (Zcl) for frequencies (f) between 16 and 1,600 Hz at two axial tensions [nonstretched (TN) and stretched (TS); TS > TN]. From 16 to 64 Hz, c slightly increased because of the viscoelastic properties of the wall tissues. Between 64 and 200 Hz, c was relatively constant and less than the free-field speed of sound (c0 = 340 m/s), with values smaller at TS (140 +/- 39 m/s) than at TN (172 +/- 35 m/s). Above 200 Hz, c exceeded c0 and displayed two maxima at approximately 300 and approximately 700 Hz, with values of approximately 360 and approximately 550 m/s, respectively. For f > 1,400 Hz, c approached c0. We provide evidence that the two maxima in c were the result of the two-compartment behavior of the wall tissues, i.e., the separate cartilaginous and soft tissues. A nonrigid tube model with its wall impedance composed of two series resistance, compliance, and inertance pathways in parallel simultaneously fits c, Zop, and Zcl well and hence provides a link among these data. By use of the relationship between volumetric wall parameters and the tracheal geometry, separate material properties such as viscosity and Young's modulus of both the soft tissue (approximately 1 cmH2O.s and approximately 0.26 x 10(4) cmH2O, respectively) and the cartilage (approximately 3.7 cmH2O.s and approximately 2 x 10(4) cmH2O, respectively) were estimated. These results indicate that measures of c and Zop or Zcl data over these frequencies provide information about the dynamic mechanical properties of both the soft tissue and cartilage in the airway walls.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3