Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E

Author:

Oostenbrug G. S.1,Mensink R. P.1,Hardeman M. R.1,De Vries T.1,Brouns F.1,Hornstra G.1

Affiliation:

1. Department of Human Biology, Maastricht University, 6200 MD Maastricht; and Department of Internal Medicine, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands

Abstract

Oostenbrug, G. S., R. P. Mensink, M. R. Hardeman, T. De Vries, F. Brouns, and G. Hornstra. Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. J. Appl. Physiol. 83(3): 746–752, 1997.—Previous studies have indicated that fish oil supplementation increases red blood cell (RBC) deformability, which may improve exercise performance. Exercise alone, or in combination with an increase in fatty acid unsaturation, however, may enhance lipid peroxidation. Effects of a bicycle time trial of ∼1 h on RBC characteristics and lipid peroxidation were, therefore, studied in 24 trained cyclists. After 3 wk of fish oil supplementation (6 g/day), without or with vitamin E (300 IU/day), trial performance, RBC characteristics, and lipid peroxidation were measured again. RBC deformability appeared to decrease during endurance exercise. After correction for hemoconcentration, plasma total tocopherol concentrations decreased by 0.77 μmol/l ( P = 0.012) or 2.9% and carotenoid concentrations by 0.08 μmol/l ( P = 0.0008) or 4.5%. Endurance exercise did not affect the lag time and rate of in vitro oxidation of low-density lipoproteins (LDLs), but the maximum amount of conjugated dienes formed decreased by 2.1 ± 1.0 μmol/mmol LDL cholesterol ( P= 0.042) or 1.2%. Fish oil supplementation with and without vitamin E did not affect RBC characteristics or exercise performance. Both supplements decreased the rate of LDL oxidation, and fish oil supplementation with vitamin E delayed oxidation. The amount of dienes, however, was not affected. The supplements also did not change effects of exercise. We conclude that the changes observed during endurance exercise may indicate increased oxidative stress, but further research is necessary to confirm this. Fish oil supplementation does not improve endurance performance, but it also does not cause or augment changes in antioxidant levels or LDL oxidation during exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3