Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity

Author:

Verbanck Sylvia1,Larsson Hans2,Linnarsson Dag2,Prisk G. Kim3,West John B.3,Paiva Manuel4

Affiliation:

1. Akademisch Ziekenhuis, Vrije Universiteit Brussel, 1090 Brussels, Belgium;

2. Karolinska Institute, S-17177 Stockholm, Sweden;

3. Department of Medicine, University of California San Diego, La Jolla, California 92093-0931;

4. Biomedical Physics Laboratory, Université Libre de Bruxelles, 1070 Brussels, Belgium

Abstract

Verbanck, Sylvia, Hans Larsson, Dag Linnarsson, G. Kim Prisk, John B. West, and Manuel Paiva. Pulmonary tissue volume, cardiac output and diffusing capacity in sustained microgravity. J. Appl. Physiol. 83(3): 810–816, 1997.—In microgravity (μG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to μG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls ( P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P< 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to μG.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3