Affiliation:
1. Akademisch Ziekenhuis, Vrije Universiteit Brussel, 1090 Brussels, Belgium;
2. Karolinska Institute, S-17177 Stockholm, Sweden;
3. Department of Medicine, University of California San Diego, La Jolla, California 92093-0931;
4. Biomedical Physics Laboratory, Université Libre de Bruxelles, 1070 Brussels, Belgium
Abstract
Verbanck, Sylvia, Hans Larsson, Dag Linnarsson, G. Kim Prisk, John B. West, and Manuel Paiva. Pulmonary tissue volume, cardiac output and diffusing capacity in sustained microgravity. J. Appl. Physiol. 83(3): 810–816, 1997.—In microgravity (μG) humans have marked changes in body fluids, with a combination of an overall fluid loss and a redistribution of fluids in the cranial direction. We investigated whether interstitial pulmonary edema develops as a result of a headward fluid shift or whether pulmonary tissue fluid volume is reduced as a result of the overall loss of body fluid. We measured pulmonary tissue volume (Vti), capillary blood flow, and diffusing capacity in four subjects before, during, and after 10 days of exposure to μG during spaceflight. Measurements were made by rebreathing a gas mixture containing small amounts of acetylene, carbon monoxide, and argon. Measurements made early in flight in two subjects showed no change in Vti despite large increases in stroke volume (40%) and diffusing capacity (13%) consistent with increased pulmonary capillary blood volume. Late in-flight measurements in four subjects showed a 25% reduction in Vti compared with preflight controls ( P < 0.001). There was a concomittant reduction in stroke volume, to the extent that it was no longer significantly different from preflight control. Diffusing capacity remained elevated (11%; P< 0.05) late in flight. These findings suggest that, despite increased pulmonary perfusion and pulmonary capillary blood volume, interstitial pulmonary edema does not result from exposure to μG.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献