Pulmonary interstitial compartments and tissue resistance to fluid flux

Author:

Unruh H. W.,Goldberg H. S.,Oppenheimer L.

Abstract

We have produced interstitial fluid exchange in six isolated plasma-perfused canine lobes by introducing small increases in microvascular hydrostatic pressure. We measured early fast fluid exchange with a colorimetric technique and used weight changes to follow slow exchange. The observed biphasic time course suggested fluid flux across the microvascular membrane into two interstitial compartments in series (perimicrovascular and central). We related the initial rate of fluid flux into each compartment to the applied hydrostatic pressure change to obtain membrane (Kf1) and tissue conductances (Kf2) and to the exchanged volume to determine perimicrovascular (C1) and central (C2) interstitial compliances. C2 (0.25 +/- 0.193) was twice C1 (0.10 +/- 0.031 ml X cmH2O-1 X g DW-1, where DW represents dry weight. C2 increased significantly with hydration (C2 = 0.06 X WW/DW - 0.15) ml X cmH2O-1 X g DW-1 (WW/DW, wet-to-dry weight ratio), whereas C1 did not. Kf1 (0.26 +/- 0.17) was one order of magnitude larger than Kf2 (0.027 +/- 0.014 ml X min-1 X cmH2O-1 X g DW-1). Kf2 increased with hydration (Kf2 = 0.005 X WW/DW - 0.007) ml X min-1 X cmH2O-1 X g DW-1, whereas Kf1 did not. Our data point to the tissues and not the microvascular membranes as the major rate-limiting structure. Our data suggest an interstitium composed of a smaller rigid perimicrovascular space which communicates to a larger looser downstream space by a high-resistance pathway. As hydration increases, fluid accumulation becomes easier because tissue resistance to fluid flux drops and the compliance of the downstream compartment doubles.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3