Computational pulmonary edema: A microvascular model of alveolar capillary and interstitial flow

Author:

Grotberg James B.1ORCID,Romanò Francesco2ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Michigan 1 , Ann Arbor, Michigan 48109, USA

2. Université Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet 2 , F-59000 Lille, France

Abstract

We present a microvascular model of fluid transport in the alveolar septa related to pulmonary edema. It consists of a two-dimensional capillary sheet coursing by several alveoli. The alveolar epithelial membrane runs parallel to the capillary endothelial membrane with an interstitial layer in between, making one long septal tract. A coupled system of equations uses lubrication theory for the capillary blood, Darcy flow for the porous media of the interstitium, a passive alveolus, and the Starling equation at both membranes. Case examples include normal physiology, cardiogenic pulmonary edema, acute respiratory distress syndrome (ARDS), hypoalbuminemia, and effects of PEEP. COVID-19 has dramatically increased ARDS in the world population, raising the urgency for such a model to create an analytical framework. Under normal conditions fluid exits the alveolus, crosses the interstitium, and enters the capillary. For edema, this crossflow is reversed with fluid leaving the capillary and entering the alveolus. Because both the interstitial and capillary pressures decrease downstream, the reversal can occur within a single septal tract, with edema upstream and clearance downstream. Clinically useful solution forms are provided allowing calculation of interstitial fluid pressure, crossflows, and critical capillary pressures. Overall, the interstitial pressures are found to be significantly more positive than values used in the traditional physiological literature. That creates steep gradients near the upstream and downstream end outlets, driving significant flows toward the distant lymphatics. This new physiological flow provides an explanation to the puzzle, noted since 1896, of how pulmonary lymphatics can function so far from the alveoli: the interstitium is self-clearing.

Funder

NIH

Publisher

AIP Publishing

Subject

Biomedical Engineering,Biomaterials,Biophysics,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3