Regional distribution of blood flow of dogs during graded dynamic exercise

Author:

Musch T. I.1,Friedman D. B.1,Pitetti K. H.1,Haidet G. C.1,Stray-Gundersen J.1,Mitchell J. H.1,Ordway G. A.1

Affiliation:

1. Department of Internal Medicine, University of Texas Health Science Center, Southwestern Medical School, Dallas 75235.

Abstract

The regional blood flow response to progressive treadmill exercise was measured with radioactive microspheres in 25 untrained mongrel dogs. Incremental increases in work intensity resulted in corresponding increases in blood flows to the gracilis, gastrocnemius, semimembranosus, and semitendinosus muscles of the hindlimb and to the heart. During maximal exercise, blood flow was greatest in the semimembranosus muscle and lowest in the semitendinosus muscle (342 and 134 ml–1.100 g tissue-1.min-1, respectively). Exercise produced a decrease in blood flow to the temporalis muscle, which was classified as nonlocomotive in function. Blood flows to the stomach, pancreas, and large intestine decreased at the lowest exercise work load and remained diminished throughout the continuum to maximal exercise. Blood flows to the small intestine and spleen were maintained during submaximal exercise but were reduced by 50% at maximal O2 consumption (VO2max). No changes in blood flows to the kidneys, adrenal glands, liver, and brain were found. These results demonstrate that 1) renal blood flow is maintained at resting levels during exercise in untrained dogs; 2) blood flow changes in the various organs of the splanchnic region of dogs during exercise are heterogeneous; and 3) blood flows to the working skeletal muscles of dogs progressively increase with increasing work loads up to VO2max.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3