Dynamic response of the isolated passive rat diaphragm strip

Author:

Navajas D.1,Mijailovich S.1,Glass G. M.1,Stamenovic D.1,Fredberg J. J.1

Affiliation:

1. Harvard University, Boston, Massachusetts 02215.

Abstract

To further our understanding of the mechanisms underlying chest wall mechanics, we investigated the dynamic response of the isolated passive rat diaphragm strip. Stress adaptation of the tissue was measured from 0.05 to 60 s after subjecting the strips to strain steps of normalized strain amplitudes from 0.005 to 0.04. The tissue resistance (R), elastance (E), and hysteresivity (eta) were measured in the same range of amplitudes by sinusoidally straining the strip at frequencies from 0.03125 to 10 Hz. The stress (T) depended exponentially on the strain (epsilon) and relaxed and recovered linearly with the logarithm of time. E increased linearly with the logarithm of frequency and decreased with increasing amplitude. R fell hyperbolically with frequency and showed an amplitude dependence similar to that of E. To interpret the strong nonlinear behavior, we extended the viscoelastic model of Hildebrandt (J. Appl. Physiol. 28: 365–372, 1970) to include an exponential stress-strain relationship. Accordingly, the step response was described by T - Tr = Tr(e alpha delta epsilon - 1)(1 - gamma log t), where delta epsilon is the strain amplitude, Tr is the initial operating stress, alpha is a measure of the stress-strain nonlinearity, and gamma is the rate of stress adaptation. The oscillatory response of the model was computed by applying Fung's quasi-linear viscoelastic theory. This quasi-linear viscoelastic model fitted the step and oscillatory data fairly well but only if alpha depended negatively on delta epsilon, as might be expected in a plastic material.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3