Time dependent stress relaxation and recovery in mechanically strained 3D microtissues

Author:

Walker Matthew,Godin Michel,Harden James L.,Pelling Andrew E.ORCID

Abstract

AbstractCharacterizing the time-dependent mechanical properties of cells is not only necessary to determine how they deform, but also to fully understand how external forces trigger biochemical-signaling cascades to govern their behavior. Presently mechanical properties are largely assessed by applying local shear or compressive forces on single cells in isolation grown on non-physiological 2D surfaces. In comparison, we developed the microfabricated vacuum actuated stretcher to measure tensile loading of 3D multicellular ‘microtissue’ cultures. With this approach, we assessed here the time-dependent stress relaxation and recovery responses of microtissues, and quantified the spatial remodeling that follows step length changes. Unlike previous results, stress relaxation and recovery in microtissues measured over a range of step amplitudes and pharmacological treatments followed a stretched exponential behavior describing a broad distribution of inter-related timescales. Furthermore, despite a performed compendium of experiments, all responses led to a single linear relationship between the residual elasticity and degree of stress relaxation, suggesting that these mechanical properties are coupled through interactions between structural elements and the association of cells with their matrix. Lastly, although stress relaxation could be quantitatively and spatially linked to recovery, they differed greatly in their dynamics; while stress recovery behaved as a linear process, relaxation time constants changed with an inverse power law with step size. This assessment of microtissues offers insights into how the collective behavior of cells in a 3D collagen matrix generate the dynamic mechanical properties of tissues, which is necessary to understanding how cells deform and sense mechanical forces in the body.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3