Control of ventilation during exercise in patients with central venous-to-systemic arterial shunts

Author:

Sietsema K. E.1,Cooper D. M.1,Perloff J. K.1,Child J. S.1,Rosove M. H.1,Wasserman K.1,Whipp B. J.1

Affiliation:

1. Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

Abstract

The diversion of systemic venous blood into the arterial circulation in patients with intracardiac right-to-left shunts represents a pathophysiological condition in which there are alterations in some of the potential stimuli for the exercise hyperpnea. We therefore studied 18 adult patients with congenital (16) or noncongenital (2) right-to-left shunts and a group of normal control subjects during constant work rate and progressive work rate exercise to assess the effects of these alterations on the dynamics of exercise ventilation and gas exchange. Minute ventilation (VE) was significantly higher in the patients than in the controls, both at rest (10.7 +/- 2.4 vs. 7.5 +/- 1.2 l/min, respectively) and during constant-load exercise (24.9 +/- 4.8 vs. 12.7 +/- 2.61 l/min, respectively). When beginning constant work rate exercise from rest, the ventilatory response of the patients followed a pattern that was distinct from that of the normal subjects. At the onset of exercise, the patients' end-tidal PCO2 decreased, end-tidal PO2 increased, and gas exchange ratio increased, indicating that pulmonary blood was hyperventilated relative to the resting state. However, arterial blood gases, in six patients in which they were measured, revealed that despite the large VE response to exercise, arterial pH and PCO2 were not significantly different from resting values when sampled during the first 2 min of moderate-intensity exercise. Arterial PCO2 changed by an average of only 1.4 Torr after 4.5-6 min of exercise. Thus the exercise-induced alveolar and pulmonary capillary hypocapnia was of an appropriate degree to compensate for the shunting of CO2-rich venous blood into the systemic arterial circulation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3