Exercise Physiology and Cardiopulmonary Exercise Testing

Author:

Sietsema Kathy E.1,Rossiter Harry B.1

Affiliation:

1. Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Torrance, California

Abstract

AbstractAerobic, or endurance, exercise is an energy requiring process supported primarily by energy from oxidative adenosine triphosphate synthesis. The consumption of oxygen and production of carbon dioxide in muscle cells are dynamically linked to oxygen uptake (V̇O2) and carbon dioxide output (V̇CO2) at the lung by integrated functions of cardiovascular, pulmonary, hematologic, and neurohumoral systems. Maximum oxygen uptake (V̇O2max) is the standard expression of aerobic capacity and a predictor of outcomes in diverse populations. While commonly limited in young fit individuals by the capacity to deliver oxygen to exercising muscle, (V̇O2max) may become limited by impairment within any of the multiple systems supporting cellular or atmospheric gas exchange. In the range of available power outputs, endurance exercise can be partitioned into different intensity domains representing distinct metabolic profiles and tolerances for sustained activity. Estimates of both V̇O2max and the lactate threshold, which marks the upper limit of moderate-intensity exercise, can be determined from measures of gas exchange from respired breath during whole-body exercise. Cardiopulmonary exercise testing (CPET) includes measurement of V̇O2 and V̇CO2 along with heart rate and other variables reflecting cardiac and pulmonary responses to exercise. Clinical CPET is conducted for persons with known medical conditions to quantify impairment, contribute to prognostic assessments, and help discriminate among proximal causes of symptoms or limitations for an individual. CPET is also conducted in persons without known disease as part of the diagnostic evaluation of unexplained symptoms. Although CPET quantifies a limited sample of the complex functions and interactions underlying exercise performance, both its specific and global findings are uniquely valuable. Some specific findings can aid in individualized diagnosis and treatment decisions. At the same time, CPET provides a holistic summary of an individual's exercise function, including effects not only of the primary diagnosis, but also of secondary and coexisting conditions.

Publisher

Georg Thieme Verlag KG

Subject

Critical Care and Intensive Care Medicine,Pulmonary and Respiratory Medicine

Reference178 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3