Affiliation:
1. Department of Anaesthesia, Queens University, Kingston, Ontario, Canada.
Abstract
In diffuse lung injury, optimal oxygenation occurs with high-frequency oscillatory ventilation (HFO-A, where A is active expiratory phase) when sustained inflations (SI) are applied periodically to recruit lung volume. Theoretically pulsed pressures may be safer and more effective than static pressures for reexpanding alveoli. We compared the increases in lung volume and arterial PO2 (PaO2) induced by 30-s increases in mean airway pressure in six New Zealand White rabbits made atelectasis prone by saline lavage plus 1 h of conventional ventilation. Pulsatile SI's (HFO-A left on during increase in mean pressure) of delta PSI = 5, 10, and 15 cmH2O and static SI's (HFO-A off during SI) of delta PSI = 5, 10, 15, and 20 cmH2O were delivered in random order. Lungs were ventilated at 15 Hz, inspired fractional concentration of O2 = 1.0, and mean airway pressure 15-20 cmH2O between test periods and deflated to functional residual capacity before each SI to standardize volume history. With both maneuvers, increases in lung volume and PaO2 induced by SI's were proportional to the magnitude of the SI (P less than 0.001) in all cases. Pulsatile SI's consistently increased lung volume and PaO2 more than static SI's having the same delta PSI (P less than 0.005) such that any given target PaO2 or change in volume (delta V) was achieved at 5 cmH2O less mean pressure with the pulsatile maneuver. Respiratory system compliance increased after both types of SI. Oxygenation and lung volume changes at 5 min were related with r = 0.58 (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献