Abstract
Abstract
Background
Titration of the continuous distending pressure during a staircase incremental–decremental pressure lung volume optimization maneuver in children on high-frequency oscillatory ventilation is traditionally driven by oxygenation and hemodynamic responses, although validity of these metrics has not been confirmed.
Methods
Respiratory inductance plethysmography values were used construct pressure–volume loops during the lung volume optimization maneuver. The maneuver outcome was evaluated by three independent investigators and labeled positive if there was an increase in respiratory inductance plethysmography values at the end of the incremental phase. Metrics for oxygenation (SpO2, FiO2), proximal pressure amplitude, tidal volume and transcutaneous measured pCO2 (ptcCO2) obtained during the incremental phase were compared between outcome maneuvers labeled positive and negative to calculate sensitivity, specificity, and the area under the receiver operating characteristic curve. Ventilation efficacy was assessed during and after the maneuver by measuring arterial pH and PaCO2. Hemodynamic responses during and after the maneuver were quantified by analyzing heart rate, mean arterial blood pressure and arterial lactate.
Results
41/54 patients (75.9%) had a positive maneuver albeit that changes in respiratory inductance plethysmography values were very heterogeneous. During the incremental phase of the maneuver, metrics for oxygenation and tidal volume showed good sensitivity (> 80%) but poor sensitivity. The sensitivity of the SpO2/FiO2 ratio increased to 92.7% one hour after the maneuver. The proximal pressure amplitude showed poor sensitivity during the maneuver, whereas tidal volume showed good sensitivity but poor specificity. PaCO2 decreased and pH increased in patients with a positive and negative maneuver outcome. No new barotrauma or hemodynamic instability (increase in age-adjusted heart rate, decrease in age-adjusted mean arterial blood pressure or lactate > 2.0 mmol/L) occurred as a result of the maneuver.
Conclusions
Absence of improvements in oxygenation during a lung volume optimization maneuver did not indicate that there were no increases in lung volume quantified using respiratory inductance plethysmography. Increases in SpO2/FiO2 one hour after the maneuver may suggest ongoing lung volume recruitment. Ventilation was not impaired and there was no new barotrauma or hemodynamic instability. The heterogeneous responses in lung volume changes underscore the need for monitoring tools during high-frequency oscillatory ventilation.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine
Reference33 articles.
1. Kneyber MC, Zhang H, Slutsky AS. Ventilator-induced lung injury: similarity and differences between children and adults. Am J Respir Crit Care Med. 2014;190(3):258–65.
2. Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22(10):1530–9.
3. Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795–805.
4. Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, Group OS. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368(9):806–13.
5. Kneyber MC, Markhorst DG. Do we really know how to use high-frequency oscillatory ventilation in critically Ill children? Am J Respir Crit Care Med. 2016a;193(9):1067–8.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献