Cardiac output and O2 consumption during inspiratory threshold loaded breathing

Author:

Coast J. R.1,Jensen R. A.1,Cassidy S. S.1,Ramanathan M.1,Johnson R. L.1

Affiliation:

1. Department of Internal Medicine, University of Texas Health Science Center, Dallas 75235.

Abstract

In this study, noninvasive measurements of cardiac output and O2 consumption were performed to estimate the blood flow to and efficiency of the respiratory muscles that are used in elevated inspiratory work loads. Five subjects were studied for 4.5 min at a respiratory rate of 18 breaths/min and a duty cycle of 0.5. Studies were performed at rest without added respiratory loads and at elevated inspiratory work loads with the use of an inspiratory valve that permitted flow only when a threshold pressure was maintained. Cardiac output and O2 consumption were calculated using a rebreathing technique. Respiratory muscle blood flow and O2 consumption were estimated as the difference between resting and loaded breathing. Work of breathing was calculated by integrating the product of mouth pressure and volume. Increases in cardiac output and O2 consumption in response of 4.5 min loaded breathing averaged 1.84 l/min and 108 ml/min, respectively. No increases were seen in response to 20-s loaded breathing. In a separate series of experiments on four subjects, though, cardiac output increased for the first 2 min then leveled off. These results indicate that the increase in cardiac output was a metabolic effect of the increased work load and was not caused primarily by the influence of the highly negative intrathoracic pressure on venous return. Efficiency of the respiratory muscles during inspiratory threshold loading averaged 5.9%, which was similar to measurements of efficiency of respiratory muscles using whole-body O2 consumption that have been reported previously in humans and in dogs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3