Author:
Boynton B. R.,Fredberg J. J.,Buckley B. G.,Frantz I. D.
Abstract
We measured relative displacement of the rib cage (RC) and abdomen (ABD) in 12 anesthetized rabbits during forced oscillations. Sinusoidal volume changes were delivered through a tracheostomy at frequencies from 0.5 to 30 Hz and measured by body plethysmography. Displacements of the RC and ABD were measured by inductive plethysmography. During oscillation at fixed tidal volume (VT = 1.3 ml/kg) the ratio ABD/RC, normalized to unity at 0.5 Hz, was 0.88 +/- 0.06 at 2 Hz and increased to 1.28 +/- 0.13 at 6 Hz (P less than 0.01). As frequency increased further ABD/RC fell sharply but between 20 and 30 Hz reached a plateau of 0.17 +/- 0.02 (P less than 0.001). Displacements of RC and ABD were nearly synchronous from 0.5 to 2 Hz, but as frequency increased ABD lagged RC progressively, reaching a phase difference of 90 degrees between 6 and 8 Hz and 180 degrees between 16 and 20 Hz. In six additional rabbits we measured chest wall displacements while varying VT from 0.5 to 3.7 ml/kg. ABD/RC was independent of VT at low frequencies (less than or equal to 6 Hz) but fell sharply with increasing VT at the higher frequencies. We interpreted these findings using a chest wall model having an RC compartment whose displacements are governed primarily by a nonlinear compliance, in parallel with an ABD compartment whose displacements are governed by a series resistance, inertance, and in addition a nonlinear compliance. The experimental findings are in large measure accounted for by such a model if the degree of nonlinearity of ABD and RC compliances are comparable.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献