A model for the relation between respiratory neural and mechanical outputs. III. Validation

Author:

Younes M.,Riddle W.,Polacheck J.

Abstract

In the preceding two communications we described a model for the relation between respiratory neural and mechanical outputs. In the present report we test the accuracy of the model in predicting volume and flow from occlusion pressure wave forms, and vice versa. We performed single-breath airway occlusions in 21 unconscious subjects and determined the time course of occlusion pressure. We also measured the passive properties of the respiratory system. The time course of volume and flow was predicted from the occlusion pressure wave forms, and the results were compared with the spontaneous breaths immediately preceding occlusion. Inspiratory duration, shape and amplitude of occlusion-pressure wave forms, and the passive properties of the respiratory system varied widely among subjects. There was good agreement between predicted and observed values in all cases. Except for some prolongation of inspiration (Hering-Breuer reflex), diaphragmatic activity did not change during occlusion. Since occlusion pressure is proportional to inspiratory activity, we conclude that the model described provides a good approximation of the relation between inspiratory activity and spirometric output.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3