A two-compartment model of pulmonary nitric oxide exchange dynamics

Author:

Tsoukias Nikolaos M.1,George Steven C.1

Affiliation:

1. Department of Chemical and Biochemical Engineering and Materials Science, University of California at Irvine, Irvine, California 92697-2575

Abstract

The relatively recent detection of nitric oxide (NO) in the exhaled breath has prompted a great deal of experimentation in an effort to understand the pulmonary exchange dynamics. There has been very little progress in theoretical studies to assist in the interpretation of the experimental results. We have developed a two-compartment model of the lungs in an effort to explain several fundamental experimental observations. The model consists of a nonexpansile compartment representing the conducting airways and an expansile compartment representing the alveolar region of the lungs. Each compartment is surrounded by a layer of tissue that is capable of producing and consuming NO. Beyond the tissue barrier in each compartment is a layer of blood representing the bronchial circulation or the pulmonary circulation, which are both considered an infinite sink for NO. All parameters were estimated from data in the literature, including the production rates of NO in the tissue layers, which were estimated from experimental plots of the elimination rate of NO at end exhalation (ENO) vs. the exhalation flow rate (V˙E). The model is able to simulate the shape of the NO exhalation profile and to successfully simulate the following experimental features of endogenous NO exchange: 1) an inverse relationship between exhaled NO concentration and V˙E, 2) the dynamic relationship between the phase III slope andV˙E, and 3) the positive relationship between ENO andV˙E. The model predicts that these relationships can be explained by significant contributions of NO in the exhaled breath from the nonexpansile airways and the expansile alveoli. In addition, the model predicts that the relationship between ENO and V˙E can be used as an index of the relative contributions of the airways and the alveoli to exhaled NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3