Deciphering Alveolo-Capillary Gas Transfer Disturbances in Patients Recovering from COVID-19 Lung Disease

Author:

Hua-Huy Thông1ORCID,Pham-Ngoc Hà1ORCID,Aubourg Frédérique1ORCID,Lorut Christine2,Roche Nicolas2,Dinh-Xuan Anh Tuan1ORCID

Affiliation:

1. Lung Function & Respiratory Physiology Unit, Department of Respiratory Physiology and Sleep Medicine, Assistance Publique—Hôpitaux de Paris, Cochin Hospital, University Paris Cité, 75006 Paris, France

2. Department of Respiratory Medicine, APHP Centre, Institut Cochin (UMR 1016), Assistance Publique—Hôpitaux de Paris, Cochin Hospital, University Paris Cité, 75006 Paris, France

Abstract

Impaired lung gas exchange is commonly seen in patients with pulmonary involvement related to SARS-CoV-2 acute infection or post-acute COVID-19 syndrome (PACS). The primary aim of our study was to assess lung gas transfer, measuring the pulmonary diffusion capacity for nitric oxide (DLNO) and carbon monoxide (DLCO) in all COVID-19 patients. Our secondary aim was to decipher the respective roles of perturbed lung membrane conductance (DM) and reduced pulmonary capillary volume (VC) in patients with impaired lung gas exchange. From May to October 2020, we measured DLNO-DLCO in 118 patients during their post-COVID-19 period (4.6 months after infection) to decipher alveolo-capillary gas transfer disturbances. DLNO-DLCO measurement was also performed in 28 healthy non-smokers as controls. Patients were classified into three groups according to the severity (mild, moderate, and severe) of acute COVID-19 infection. Patients with mild COVID-19 had normal lung volumes and airways expiratory flows but impaired pulmonary gas exchange, as shown by the significant decreases in DLNO, DLCO, DM, and VC as compared with controls. VC was significantly impaired and the DLNO/DLCO ratio was increased in patients with moderate (n = 4, 11%) and severe COVID-19 (n = 23, 49%). Abnormal membrane conductance was also seen in all three groups of post-COVID-19 patients. These findings suggest a persistent alveolo-capillary gas transfer defect, implying not only reduced membrane conductance but also abnormal pulmonary vascular capacitance in all PACS patients, even those with a milder form of COVID-19 infection.

Funder

Air Liquide Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3