Recent advances in pulmonary drug delivery using large, porous inhaled particles

Author:

Edwards David A.1,Ben-Jebria Abdelaziz1,Langer Robert2

Affiliation:

1. Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802; and

2. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

The ability to deliver proteins and peptides to the systemic circulation by inhalation has contributed to a rise in the number of inhalation therapies under investigation. For most of these therapies, aerosols are designed to comprise small spherical droplets or particles of mass density near 1 g/cm3 and mean geometric diameter between ∼1 and 3 μm, suitable for particle penetration into the airways or lung periphery. Studies performed primarily with liquid aerosols have shown that these characteristics of inhaled aerosols lead to optimal therapeutic effect, both for local and systemic therapeutic delivery. Inefficient drug delivery can still arise, owing to excessive particle aggregation in an inhaler, deposition in the mouth and throat, and overly rapid particle removal from the lungs by mucocilliary or phagocytic clearance mechanisms. To address these problems, particle surface chemistry and surface roughness are traditionally manipulated. Recent data indicate that major improvements in aerosol particle performance may also be achieved by lowering particle mass density and increasing particle size, since large, porous particles display less tendency to agglomerate than (conventional) small and nonporous particles. Also, large, porous particles inhaled into the lungs can potentially release therapeutic substances for long periods of time by escaping phagocytic clearance from the lung periphery, thus enabling therapeutic action for periods ranging from hours to many days.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3