Effects of alveolated duct structure on aerosol kinetics. II. Gravitational sedimentation and inertial impaction

Author:

Tsuda A.1,Butler J. P.1,Fredberg J. J.1

Affiliation:

1. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115.

Abstract

We studied the effects of alveolated duct structure on deposition processes for particle diameters > or = 1 micron. For such large particles, Brownian motion is insignificant but gravity and inertial forces play an important role. A Lagrangian description of particle dynamics in an alveolated duct flow was developed, and computational analysis was performed over the physiologically relevant range. At low flow rates gravity caused deposition. Gravitational cross-streamline motion depended on the coupled effects of curvature of gas streamlines and duct orientation relative to gravity. The detailed convective flow pattern was an important factor in determining deposition. At higher flow rates, inertial impaction contributed markedly to deposition. The curved nature of streamlines again played a major role on deposition, but duct orientation had little effect. In the medium range of flow rates, both gravitational and inertial forces simultaneously influenced particle motion. Particle inertia, per se, did not cause deposition but substantially suppressed gravitational deposition. The deposition mechanism was complex; contrary to what is often assumed in past analyses, the interaction between gravitational and inertial effects could not be described in a simple additive fashion. We conclude that the structure of the alveolar duct has an important role in gravitational sedimentation and inertial impaction in the lung acinus.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3