Pulmonary interstitial pressure in intact in situ lung: transition to interstitial edema

Author:

Miserocchi G.1,Negrini D.1,Del Fabbro M.1,Venturoli D.1

Affiliation:

1. Istituto di Fisiologia Umana, Universita degli Studi, Milan, Italy.

Abstract

In anesthetized rabbits (n = 25) subject to slow intravenous saline loading (0.4 ml.min-1.kg-1) for 3 h, we measured pulmonary interstitial pressure (Pip) in intact in situ lungs with glass micropipettes inserted directly into the lung parenchyma via a "pleural window." Measurements were done in apneic animals at the end-expiratory volume with O2 delivered in the trachea. Pip was -10 +/- 1.5 (SD) cmH2O in control and increased to 0.6 +/- 3.8 and 5.7 +/- 3.3 cmH2O at 66 and 180 min, respectively. The wet-to-dry weight ratio (W/D) of the lung was 5.04 +/- 0.2 in the control group and 5.34 +/- 0.7 at 180 min (+6%); the corresponding W/D for intercostal muscles were 3.25 +/- 0.03 and 4.19 +/- 0.5 (+28%). Pulmonary interstitial compliance was 0.47 ml.mmHg-1.100 g wet wt-1. Pulmonary arterial and left atrial pressures were 18.4 +/- 2 and 3 +/- 1 cmH2O in control and increased to 19.5 +/- 2.9 and 4.6 +/- 1.7 cmH2O at 180 min, respectively. Aortic flow (cardiac output) increased from 103 +/- 35 to 131 +/- 26 ml/min; pulmonary resistance fell from 0.17 +/- 0.06 to 0.14 +/- 0.05 cmH2O.min.ml-1 (-18%), suggesting that the increase in Pip did not limit blood flow. The pulmonary capillary-to-interstitium filtration pressure gradient decreased sharply from a control value of 10 cmH2O to 0 cmH2O within 60 min because of the increase in Pip and remained unchanged for < or = 180 min. Data suggest that the pulmonary interstitial matrix can withstand fluid pressures above atmospheric, preventing the development of pulmonary alveolar flooding.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3