Affiliation:
1. Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
Abstract
The relationship between blood lactate concentration ([La]) and O2 uptake (VO2) during incremental exercise remains controversial: does [La] increase smoothly as a function of VO2 (continuous model), or does it begin to increase abruptly above a particular metabolic rate (threshold model)? The dynamic characteristics of the underlying physiological system are investigated using system identification analysis techniques. A multivariate deterministic time series model of the [La] and VO2 response to incremental changes in work rate was fitted to simulated and experimental data. Time-varying system response parameters were determined through the application of a weighted recursive least squares algorithm. The model, using the identified time-varying parameters, provided a good fit to the data. The variation of these parameters over time was then examined. Two major transitions in the parameters were found to occur at intensity levels equivalent to 53 +/- 8% and 77 +/- 9% maximal VO2 (experimental data). These changes in the model parameters indicate that the best linear dynamic model that fits the observed system behavior has changed. This implies that the system has changed its operation in some way, by altering its structure or by moving to a different operating region. The identified parameter changes over time suggest that the exercise intensity range (from rest to maximal VO2) is divided into three main intensity domains, each with distinct dynamics. Further study of this three-phase system may help in the understanding of the underlying physiological mechanisms that affect the dynamics of [La] and VO2 during exercise.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献