Structural failures of the blood–gas barrier and the epithelial–epithelial cell connections in the different vascular regions of the lung of the domestic fowl, Gallus gallus variant domesticus, at rest and during exercise

Author:

Maina John N.1,Jimoh Sikiru A.23

Affiliation:

1. Department of Zoology, University of Johannesburg, Auckland Park 2006, Johannesburg, South Africa

2. School of Anatomical Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa

3. Present address: Department of Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory 7935, Cape Town, South Africa

Abstract

Summary Structural failure of blood–gas barrier (BGB) and epithelial–epithelial cell connections (EECCs) in different vascular regions of the exchange tissue of the lung was studied in rested and exercised chickens. The number of red blood cells (nRBCs) was counted and protein concentration (PC) measured after lavaging the respiratory system, and blood was sampled to determine the blood lactate levels (BLLs). The numbers of complete BGB breaks (nBGBBs) and those of the EECCs (nEECCBs) were counted in the different vascular territories of the lung. The nRBCs and the PCs increased with increasing exercise intensities but the rate of increase decreased at higher workloads. From rest to the fastest experimental treadmill speed of 2.95 m.sec−1, BLLs increased 4-fold. In all cases, the nEECCBs exceeded those of the BGB, showing that structurally the BGB is relatively weaker than the EECC. The increase in the number of breaks with increasing exercise can be attributed to increase in the pulmonary capillary blood pressure (PCBP) from faster heart rates and higher cardiac outputs, while the leveling out of the measurements made at higher workloads may have arisen from hemodynamic changes that initially ensued from exudation of blood plasma and then flow of blood into the air capillaries on failure of the BGB. The relative differences in the nBGBBs and the nEECCBs in the different vascular regions of the lung were ascribed to diameters of the branches and their points of origin and angles of bifurcation from the pulmonary artery. Presence of RBCs in the air capillaries of the lungs of rested chickens showed that failure of the BGB commonly occurs even in healthy and unstressed birds. Rapid repair and/or defense responses, which were observed, may explain how birds cope with mechanical injuries of the BGB.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference70 articles.

1. The blood supply to the lung.;Abdalla,1989

2. Pulmonary arteriovenous anastomoses in the avian lung: do they exist?;Abdalla;Respir. Physiol.,1976

3. Rhythmic variations in energy metabolism.;Aschoff;Fed. Proc.,1970

4. Energy metabolism and heart rate during treadmill exercise in the Marabou stork.;Bamford;J. Appl. Physiol.,1980

5. Role of aortic root motion in the pathogenesis of aortic dissection.;Beller;Circulation,2004

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3