Acoustic rhinometry: influence of paranasal sinuses

Author:

Hilberg O.1,Pedersen O. F.1

Affiliation:

1. Institute of Environmental and Occupational Medicine, Aarhus University, Denmark.

Abstract

The influence of the maxillary sinuses in acoustic rhinometry (AR) has not been evaluated, and this is the aim of the present study. We examined six subjects with AR and magnetic resonance imaging (MRI) after nasal decongestion to compare the area-distance relationships determined by the two methods. From the MRI data we obtained copies of the nasal cavities with and without maxillary sinuses, which were made in plastic by a stereolithographic method. AR curves from models without maxillary sinuses differed from AR curves with sinuses included but were in agreement with MRI curves without inclusion of sinuses. A similar difference in AR was seen in two subjects before and after the nasal cavities were flushed with saline to fill up the maxillary sinuses. The measured volume in the first 50 mm of the nasal cavity models was unaffected by the sinuses, but the volume in the first 70 mm corresponding to the length of the nasal cavity septum was increased slightly but significantly (from 10.8 to 11.3 cm3; P = 0.05). The presence of maxillary sinuses increased the volume of the epipharynx (70-100 mm from the nostril) from 12.2 to 21.3 cm3 (P < 0.01), and this increase was not due to the influence from the contralateral nasal cavity. We conclude that the maxillary sinuses may significantly contribute to the acoustically determined areas in the posterior part of the nasal cavity and the epipharynx, especially during decongestion, and may explain a part of the difference between area-distance curves obtained by AR and MRI, whereas contribution from the contralateral nasal cavity does not.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3