Affiliation:
1. Department of Otorhinolaryngology, University of Ulm, Ulm, Germany
2. First Department of Otorhinolaryngology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Abstract
Background Changes of nasal dimensions can influence the air-conditioning capacity of the nose because of alterations of airflow patterns. The goal of this study was to evaluate the correlation between intranasal temperature and humidity values and nasal dimensions, assessed by means of acoustic rhinometry. Methods Eighty healthy volunteers (40 men and 40 women; median age, 51 years; range, 20–84 years) were enrolled in the study. In total, 160 nasal cavities were examined. All volunteers underwent a standardized acoustic rhinometry. Additionally, intranasal air temperature and humidity measurements at defined intranasal detection sites within the anterior nasal segment were performed. Results There was no statistically significant difference between the right and left side of the nose regarding air temperature, absolute humidity, and acoustic rhinometric values. A negative correlation was established between the rhinometric nasal volumes/minimal cross-sectional areas and air temperature and absolute humidity values at the three intranasal detection sites. Conclusion According to our results, nasal volumes and cross- sectional areas relevantly influence nasal air conditioning. A healthy nasal cavity with smaller volumes and cross-sectional areas seems to present a more effective air-conditioning function than a too “wide” open nose because of changes in airflow patterns. This observation should be considered as a limitation for overly extensive nasal surgery especially of the turbinates.
Subject
General Medicine,Otorhinolaryngology,Immunology and Allergy
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献