Circulatory regulation during exercise in different ambient temperatures

Author:

Nadel E. R.,Cafarelli E.,Roberts M. F.,Wenger C. B.

Abstract

Three relatively fit subjects performed duplicate 20- to 25-min cycle ergometer exercise bouts at moderate and heavy intensities (40% and 70% Vo2 max) in ambient temperatures of 20, 26, and 36 degrees C. They approached a steady state in internal body temperature (Tes) in all but the heavy exercise in the heat, where Tes rose consistently, averaging 38.84 degrees C at the termination of exercise. Cardiac output (Q), estimated by a rebreathing technique, was proportional to Vo2 and independent of the body temperatures, except during the lower exercise intensity in the heart, where Q averaged 1.31 . min -1 higher throughout. In any environment, forearm blood flow was linearly related to Tes above the Tes threshold for vasodilation, but during heavy exercise in the heat this relationship was severely attenuated above a Tes around 38.0 degrees C, when forearm blood flow exceeded 15 ml.min -1 .100 ml -1. Plasma volume decreases during exercise were primarily a function of the intensity of exercise. During heavy exercise in the heat the relative vasconstriction contributes to the maintenance of an adequate stroke volume preventing a fall in Q. In this case, circulatory regulation has precedence over temperature regulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3