O2 dependence of pregnenolone and aldosterone synthesis in mitochondria from bovine zona glomerulosa cells

Author:

Raff H.1,Jankowski B.1

Affiliation:

1. Endocrine Research Laboratory, St. Luke's Medical Center, Milwaukee 53215, USA.

Abstract

Hypoxia in vivo results in a decrease in aldosterone not accounted for by extra-adrenal controllers. We have demonstrated that aldosteronogenesis but not cortisol synthesis in the whole cell is O2 sensitive. In the intact glomerulosa cell, this sensitivity is located in the late pathway step catalyzed by conversion of corticosterone to aldosterone (P-450aldo), whereas the early pathway catalyzed by conversion of cholesterol to pregnenolone (P-450scc) is not inhibited until PO2 is very low. Because P-450aldo and P-450scc are mitochondrial enzymes that depend on the same NADPH-specific electron transport proteins, we hypothesized that O2 sensitivity would be independent of energy production and expressed in isolated mitochondria. We measured the conversion of exogenous 25(OH)-cholesterol to pregnenolone and of exogenous corticosterone to aldosterone in the presence of cyanoketone in mitochondria isolated from bovine zona glomerulosa cells and exposed to an experimental gas (1–100% O2) vs. a room air control. Pregnenolone production was not affected until PO2 was < 35 Torr and decreased to almost nil when PO2 was < 30 Torr. In contrast, aldosterone production increased under hyperoxia and decreased under moderate decreases in O2. The conversion of corticosterone to aldosterone was maintained at approximately 50% of control, even when PO2 was < 20 Torr. The sensitivity of the aldosterone pathway to changes in O2 within the physiological range appears to reside in the mitochondrial late pathway (i.e., P-450aldo) and is not significantly influenced by cytosolic regulators of steroidogenesis or by limitation of reducing equivalents.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3