Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

Author:

Maron Bradley A.1,Oldham William M.1,Chan Stephen Y.1,Vargas Sara O.1,Arons Elena1,Zhang Ying-Yi1,Loscalzo Joseph1,Leopold Jane A.1

Affiliation:

1. From the Divisions of Cardiovascular Medicine (B.A.M., S.Y.C., E.A., Y.-Y.Z., J.L., J.A.L.) and Pulmonary and Critical Care Medicine (W.M.O.), Brigham and Women’s Hospital and Harvard Medical School, Boston, MA; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston, MA (B.A.M.); and Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA (S.O.V.).

Abstract

Background— The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension, suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in pulmonary arterial hypertension. Methods and Results— Patients with pulmonary arterial hypertension, rats with Sugen/hypoxia–pulmonary arterial hypertension, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia–StAR signaling in HPAECs. Hypoxia (2.0% FiO 2 ) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography–mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein-1 site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR–small interfering RNA or treated with the activator protein-1 inhibitor SR-11302 [3-methyl-7-(4-methylphenyl)-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenoic acid], hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in vivo. Conclusion— Our findings identify autonomous aldosterone synthesis in HPAECs attributable to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular remodeling and fibrosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3