Affiliation:
1. Department of Physiotherapy, University of Queensland, Brisbane, Australia.
Abstract
The relationships between force, electromyography (EMG), and muscle sounds recorded by acoustic myography (AMG) were investigated for both voluntary and stimulated isometric contractions in the adductor pollicis muscle. Voluntary activity was performed at 10, 25, 50, 75, 85, and 100% of maximal voluntary contraction (MVC) force. Stimulated contractions were produced by supramaximal electrical stimulation of the ulnar nerve at the wrist at frequencies of 10, 20, 30, 50, 70, and 100 Hz. Contractions lasted for 4 s each, and were performed in random order with a 3-min rest between each. The voluntary and stimulation studies were performed in random order between subjects. Simultaneous recordings were obtained for force, force oscillation (from the differentiated force signal), and raw and integrated AMG (IAMG) and EMG (IEMG). During voluntary contractions, IAMG increased with force up to MVC (r2 = 0.99, P less than 0.001) in a curvilinear fashion and a similar relationship was seen between force and IEMG (r2 = 0.99, P less than 0.001). Conversely, during stimulated contractions as stimulation frequency increased, IAMG decreased in a fashion mirroring the frequency-force curve. The frequency of the AMG signal matched stimulation frequency and declines in total IAMG were due to reductions in amplitude of the AMG signal. The stimulation frequency-oscillation of force relationship was identical to that seen for stimulation frequency and IAMG. Integrated EMG increased linearly with stimulation frequency (r = 0.99). The stimulation results suggest that muscle sounds reflect oscillation of muscle fibers and that AMG signal characteristics are determined by motor control mechanisms rather than intrinsic contractile processes.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献