Quadriceps mechanomyography reflects muscle fatigue during electrical stimulus-sustained standing in adults with spinal cord injury – a proof of concept

Author:

Ibitoye Morufu Olusola12,Hamzaid Nur Azah1,Abdul Wahab Ahmad Khairi1,Hasnan Nazirah3,Davis Glen M.14

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria

3. Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia

4. Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sports Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

AbstractThis study investigates whether mechanomyography (MMG) produced from contracting muscles as a measure of their performance could be a proxy of muscle fatigue during a sustained functional electrical stimulation (FES)-supported standing-to-failure task. Bilateral FES-evoked contractions of quadriceps and glutei muscles, of four adults with motor-complete spinal cord injury (SCI), were used to maintain upright stance using two different FES frequencies: high frequency (HF – 35 Hz) and low frequency (LF – 20 Hz). The time at 30° knee angle reduction was taken as the point of critical “fatigue failure”, while the generated MMG characteristics were used to track the pattern of force development during stance. Quadriceps fatigue, which was primarily responsible for the knee buckle, was characterized using MMG-root mean square (RMS) amplitude. A double exponential decay model fitted the MMG fatigue data with good accuracy [R2 = 0.85–0.99; root mean square error (RMSE) = 2.12–8.10] implying changes in the mechanical activity performance of the muscle’s motor units. Although the standing duration was generally longer for the LF strategy (31–246 s), except in one participant, when compared to the HF strategy, such differences were not significant (p > 0.05) but suggested a faster muscle fatigue onset during HF stimulation. As MMG could discriminate between different stimulation frequencies, we speculate that this signal can quantify muscle fatigue characteristics during prolonged FES applications.

Publisher

Walter de Gruyter GmbH

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3