Selective autonomic stimulation of canine trachealis with dimethylphenylpiperazinium

Author:

Leff A. R.,Munoz N. M.

Abstract

The response of canine tracheal muscle to autonomic stimulation with 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) was studied isometrically in 39 dogs in vivo. Intra-arterial (ia) DMPP (2.5 X 10(-4) to 2.5 X 10(-2) mg/kg) caused selective dose related contraction [maximum 30.1 +/- 6.5 gram-force (gf)/cm] due to regional stimulation of parasympathetic ganglia. This contraction was blocked by regional administration of atropine 10(-3) mg/kg ia and hexamethonium 5 X 10(-2) mg/kg ia. Nonselective intravenous (iv) administration of DMPP 2.5 X 10(-2) mg/kg caused parasympathetic tracheal contraction [+13.4 +/- 1.64 gf/cm] followed by later sympathetic relaxation [-11.8 +/- 2.3 gf/cm]; 0.5 mg/kg iv atropine abolished contraction but did not affect relaxation. The role of the adrenal gland vs. direct sympathetic innervation in producing tracheal relaxation after sympathetic stimulation was also studied. Tracheal relaxation to 2.5 X 10(-2) mg/kg iv DMPP was -18.2 +/- 4.0 gf/cm before adrenalectomy (ADX) and -4.3 +/- 0.9 gf/cm afterward (P less than 0.001). In contrast, tracheal contraction resulting from alpha-adrenergic stimulation after 2.5 X 10(-2) mg/kg iv DMPP in beta-blocked (BB) dogs was not significantly altered by ADX. At 2.5 X 10(-1) mg/kg iv DMPP, the alpha-adrenergic contractile response was still 70% of the response prior to ADX. We conclude that sympathetic tracheal relaxation in dogs is predominantly mediated by circulating catecholamine from the adrenal gland, but that alpha-adrenergic contraction after BB results predominantly from direct sympathetic innervation and is not greatly augmented by adrenal secretion. We also report a new method for selective stimulation of airway cholinergic nerves in vivo without systemic effects.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3