Affiliation:
1. Department of Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 Japan
Abstract
Respiratory-related bronchial rhythmic contraction was quantitatively analyzed in eight paralyzed dogs. The caliber of the fifth-generation bronchus was continuously measured as the pressure (Pbr) of a balloon-tipped catheter under the condition of complete immobilization due to extracorporeal oxygenation. Pbr changed rhythmically in synchrony with phrenic nerve activity (PNA) bursts. Rhythmic bronchial constriction started at 1.4 ± 0.49 (SD) s after onset of PNA, reached a maximum level at 2.8 ± 1.6 s after termination of PNA, and then decreased exponentially with a time constant of 6.9 ± 2.5 s. When the respiratory rate of dogs increased at hypercapnia, the various bronchial contractions fused to behave like a tonic contraction. The rhythmic component of this contraction was separated and quantitatively analyzed. Each rhythmic Pbr amplitude linearly increased with increases in PNA amplitude, whereas the end-expiratory Pbr level was not significantly changed. Bilateral efferent nerve transection did not decrease the end-expiratory Pbr level. In response to electric stimulation of efferent nerve fibers, the bronchus did not maintain tonic contraction. We concluded that vagally mediated commands contract bronchial smooth muscle only intermittently and that most of bronchial resting tension may thus be attributed to the summation of rhythmic contractions.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献