Respiratory heat and water exchange: physiological and clinical implications

Author:

McFadden E. R.

Abstract

Recent evidence demonstrates that the conditioning of inspired air is not confined to the upper airways as formerly thought but rather involves as much of the tracheobronchial tree as necessary to complete the process. As the need to condition more air is increased by raising ventilation and/or lowering inspired temperature (and so water content), the point at which the inspirate reaches body conditions moves progressively deeper into the lungs, and under extreme conditions thermal transfers can be measured in airways less than 2 mm in diameter. The decrease in airway temperature that develops from the movement of heat and water from the mucosa during inspiration not only facilitates recovery during expiration by reversing the thermal gradients, but it may also produce airway obstruction in susceptible individuals by an as yet undefined mechanism. Respiratory heat exchange may also interact with airway secretory processes and mucociliary transport mechanisms and may help regulate bronchial blood supply.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3