Effects of pulmonary embolism on pulmonary vascular impedance in dogs and minipigs

Author:

Maggiorini Marco1,Brimioulle Serge1,De Canniere Didier1,Delcroix Marion1,Naeije Robert1

Affiliation:

1. Laboratory of Cardiovascular and Respiratory Physiology, Erasme University Hospital, B-1070 Brussels, Belgium

Abstract

Pigs have been reported to present with a stronger pulmonary vascular reactivity than many other species, including dogs. We investigated the pulmonary vascular impedance response to autologous blood clot embolic pulmonary hypertension in anesthetized and ventilated minipigs ( n = 6) and dogs ( n = 6). Before embolization, minipigs, compared with dogs, presented with higher mean pulmonary arterial pressure (Ppa; by an average of 9 mmHg), a steeper slope of Ppa-flow (Q˙) relationships, and higher 0-Hz impedance (Z0) and first-harmonic impedance (Z1), without significant differences in characteristic impedance (Zc), and a lower ratio of pulsatile hydraulic power to total hydraulic power. Embolic pulmonary hypertension (mean Ppa: 40–55 mmHg) was associated with increased Z0 and Z1 in both species, but the minipigs had a steeper slope of Ppa/Q˙ plots and an increased Zc. At identical Q˙ and Ppa, minipigs still presented with higher Z1 and Zc and a lower ratio of pulsatile hydraulic power to total hydraulic power. The energy transmission ratio, defined as the hydraulic power in the measured waves divided by the hydraulic power in the forward waves, was better preserved after embolism in minipigs. No differences in wave reflection indexes were found before and after embolism. We conclude that minipigs, compared with dogs, present with a higher pulmonary vascular resistance and reactivity and adapt to embolic pulmonary hypertension by an increased Zc without earlier wave reflection. These differences allow for a reduced pulsatile component of hydraulic power and, therefore, a better energy transfer from the right ventricle to the pulmonary circulation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3