Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent

Author:

Jones Allan W.1,Rubin Leona J.1,Magliola Lawrence1

Affiliation:

1. Departments of Physiology and Veterinary Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65212

Abstract

We tested the hypothesis that exercise training reduces the sensitivity of coronary smooth muscle to endothelin-1 (ET-1), with the adaptation being greater in male than in female miniature swine. The efficacy of training was similar in males and females. Cumulative ET-1 contractile responses of coronary branches and left circumflex artery were significantly shifted to the right in exercise-trained (Ex) males but not in Ex females. Analyses of the excitatory concentration causing a 50% response (EC50) showed a 1.7- to 2.2-fold shift in Ex males with no change in maximum tension. Nonselective blockade of K-channel activity with tetraethylammonium (TEA; 30–50 mM) significantly shifted the EC50to a lower concentration in both Ex males (1.25-fold) and Ex females (2.2-fold) but not in sedentary (Sed) groups. Females (combined Sed and Ex) exhibited a greater response to TEA than did combined Sed and Ex males. Changes in [32P]phosphatidic acid ([32P]PA) provided an indicator of ET-1-induced phospholipase activity. The magnitude of the [32P]PA response was reduced by Ex in both males and females without affecting the EC50. It is concluded that the contractile sensitivity of coronary arteries to ET-1 is influenced by physical activity in a gender-dependent manner. It is unclear why the contractile sensitivity in females was not reduced by Ex as in the males, because Ex significantly affected responses to TEA and ET-1 stimulation of [32P]PA production in both males and females. A potential gender difference in K-channel function may contribute to this discrepancy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3