Critical O2 transport values at lowered body temperatures in rats

Author:

Cain S. M.,Bradley W. E.

Abstract

Whole-body O2 uptake (VO2) in rats was reported not to increase when total O2 transport (TOT = cardiac output X arterial O2 concentration) was increased above normal ranges when body temperature was kept at 38 degrees C (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 660-664, 1982). Similar experiments were performed to see if hypothermic rats at 34 degrees C would increase VO2 with an increased TOT in an effort to generate heat. Anesthetized rats were ventilated with 9 or 12% O2 (hypoxia), room air (normoxia), and O2 (hyperoxia) to vary TOT from 52.6 to 6.6 ml X kg-1 X min-1. VO2 was measured in a closed-circuit, double servospirometer system. Although VO2 was significantly lower at 34 degrees C than the values previously found at 38 degrees C with normoxia and hyperoxia, there was no increase with increasing values of TOT. In spite of a lower plateau value of VO2 at 34 degrees C, the critical value of TOT below which VO2 could not be maintained was nearly the same as at 38 degrees C (22 ml X kg-1 X min-1). The reason for this was that O2 was less completely extracted as TOT was lowered below the critical value in the hypothermic animal. Some of the difficulty in extracting O2 at the tissues was probably due to the decrease in P50 (PO2 at 50% saturation) that occurs with decreased body temperature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3