Friction in airway smooth muscle: mechanism, latch, and implications in asthma

Author:

Fredberg J. J.1,Jones K. A.1,Nathan M.1,Raboudi S.1,Prakash Y. S.1,Shore S. A.1,Butler J. P.1,Sieck G. C.1

Affiliation:

1. Department of Environmental Health, Harvard School of Public Health, Boston, Massachsetts 02115; and Department of Anesthesiology and Department of Physiology and Biophysics, Mayo Clinic, Rochester, Minnesota 55905

Abstract

Fredberg, J. J., K. A. Jones, M. Nathan, S. Raboudi, Y. S. Prakash, S. A. Shore, J. P. Butler, and G. C. Sieck. Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J. Appl. Physiol. 81(6): 2703–2712, 1996.—In muscle, active force and stiffness reflect numbers of actin-myosin interactions and shortening velocity reflects their turnover rates, but the molecular basis of mechanical friction is somewhat less clear. To better characterize molecular mechanisms that govern mechanical friction, we measured the rate of mechanical energy dissipation and the rate of actomyosin ATP utilization simultaneously in activated canine airway smooth muscle subjected to small periodic stretches as occur in breathing. The amplitude of the frictional stress is proportional to ηE, where E is the tissue stiffness defined by the slope of the resulting force vs. displacement loop and η is the hysteresivity defined by the fatness of that loop. From contractile stimulus onset, the time course of frictional stress amplitude followed a biphasic pattern that tracked that of the rate of actomyosin ATP consumption. The time course of hysteresivity, however, followed a different biphasic pattern that tracked that of shortening velocity. Taken together with an analysis of mechanical energy storage and dissipation in the cross-bridge cycle, these results indicate, first, that like shortening velocity and the rate of actomyosin ATP utilization, mechanical friction in airway smooth muscle is also governed by the rate of cross-bridge cycling; second, that changes in cycling rate associated with conversion of rapidly cycling cross bridges to slowly cycling latch bridges can be assessed from changes of hysteresivity of the force vs. displacement loop; and third, that steady-state force maintenance (latch) is a low-friction contractile state. This last finding may account for the unique inability of asthmatic patients to reverse spontaneous airways obstruction with a deep inspiration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3