Effect of induced erythrocythemia on aerobic work capacity

Author:

Buick F. J.,Gledhill N.,Froese A. B.,Spriet L.,Meyers E. C.

Abstract

The aerobic work capacity of 11 highly trained runners was studied employing a double-blind design 1) before phlebotomy (C1), 2) following restoration of normocythemia (C2), 3) after a sham reinfusion of 50 ml of saline (sham), 4) following autologous reinfusion of approximately 900 ml of freeze-preserved blood (reinfusion), and 5) upon reestablishment of control hematologic levels after erythrocythemia (C3). There were no hematologic differences among C1, C2, sham, and C3, but following reinfusion, hemoglobin was significantly elevated (15.7-16.7 g . 100 ml-1). Maximum O2 consumption (VO2max) and running time to exhaustion were significantly increased 24 h postreinfusion (5.11-5.37 l . min-1 and 7.20-9.65 min, respectively) and 7 days postreinfusion. When sham preceded reinfusion, VO2 max and time to exhaustion were the same as control. However, 16 wk postreinfusion, despite the return to normal hematologic values, VO2max remained significantly above control levels at sham and C3. These findings indicate that there is a distinct increase in VO2max following induced erythrocythemia and suggest that oxygen transport limits maximal aerobic capacity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of dry dynamic apnea on aerobic power in elite rugby athletes: a warm-up method;Frontiers in Physiology;2024-01-16

2. The relationship between hemoglobin and V˙O2max: A systematic review and meta-analysis;PLOS ONE;2023-10-12

3. Indirect biomarkers of blood doping: A systematic review;Drug Testing and Analysis;2023-05-22

4. Maximal Oxygen Consumption;Exercise, Respiratory and Environmental Physiology;2023

5. Prestatiebevorderende middelen in de sport;Inspannings- en sportfysiologie;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3