Author:
Raethjen Jan,Govindan R. B.,Kopper Florian,Muthuraman M.,Deuschl Günther
Abstract
Conflicting results on the existence of tremor-related cortical activity in essential tremor (ET) have raised questions on the role of the cortex in tremor generation. Here we attempt to address these issues. We recorded 64 channel surface EEGs and EMGs from forearm muscles in 15 patients with definite ET. EEG and EMG power spectra, relative power of the rhythmic EMG activity, relative EEG power at the tremor frequency, and EEG–EMG and EEG–EEG coherence were calculated and their dynamics over time explored. Corticomuscular delay was studied using a new method for narrow-band coherent signals. Corticomuscular coherence in the contralateral central region at the tremor frequency was present in all patients in recordings with a relative tremor EMG power exceeding a certain level. However, the coherence was lost intermittently even with tremors far above this level. Physiological 15- to 30-Hz coherence was found consistently in 11 patients with significantly weaker EMG activity in this frequency range. A more frontal (mesial) hot spot was also intermittently coupled with the tremor and the central hot spot in five patients. Corticomuscular delays were compatible with transmission in fast corticospinal pathways and feedback of the tremor signal. Thus the tremor rhythm is intermittently relayed only in different cortical motor areas. We hypothesize that tremor oscillations build up in different subcortical and subcortico-cortical circuits only temporarily entraining each other.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献