Nonspiking and Spiking Proprioceptors in the Crab: Nonlinear Analysis of Nonspiking TCMRO Afferents

Author:

DiCaprio Ralph A.1

Affiliation:

1. Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701

Abstract

The proprioceptor that signals the position and movement of the first joint of crustacean legs provides an excellent system for investigating information processing and transmission in neurons that function in a graded (nonspiking) manner in the context of a simple motor system. The thoracic-coxal muscle receptor organ (TCMRO) spans the thoracic-coxal joint and transmits graded signals to the CNS via two large nonspiking axons. The response characteristics and nonlinear models of the input-output relationship for the two nonspiking TCMRO afferents (S and T fibers) were determined using white noise analysis (Wiener kernel) methods. The best-fitting linear responses of these neurons was similar, as were their second-order kernels. The gains of the afferents slowly increased with increasing frequency and reached a maximum at approximately 40–60 Hz for the S fiber and 60–80 Hz for the T fiber. Above this corner frequency, the gains of both afferents decreased at approximately 20 dB/decade for the remainder of the 220-Hz stimulus bandwidth. The shape of the first-order kernels, and hence the corresponding (linear) gain functions, of both afferents were similar when driven with different amplitudes of noise, covering a 40-fold amplitude range. Predictions of the S fiber response based on the first two Wiener kernels were accurate, with the second-order model producing a mean square error of 6–8%. Second-order Wiener models for the T fiber were less accurate with a mean square error of approximately 22–26%, but this accuracy improved to 10–16% with the incorporation of the third-order term in the Wiener expansion. The effect of cable properties on the transmission of the sensory potentials to the CNS was evaluated by determining the system characteristics using membrane potentials 5–7 mm distal to the transduction site. The major change after transmission along the axon was a low-pass filtering of the sensory signals and consequent reduction in signal bandwidth.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3