A Prolongation of the Postspike Afterhyperpolarization Following Spike Trains Can Partly Explain the Lower Firing Rates at Derecruitment Than Those at Recruitment

Author:

Wienecke J.12,Zhang M.1,Hultborn H.1

Affiliation:

1. Department of Neuroscience and Pharmacology and

2. Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark

Abstract

The original motivation for this study was the observation in previous human experiments that the motor neuron firing frequency (recorded from the motor units in the EMG) was lower at derecruitment than that at recruitment, with slow linearly varying voluntary contractions. Are the lower firing rates at derecruitment correlated with a change in the postspike afterhyperpolarization (AHP) after preceding spike trains? This question was investigated by intracellular recordings from cat motor neurons in both unanesthetized and anesthetized preparations. The firing frequencies at recruitment and derecruitment were compared during slow triangular current injections mimicking the slow linearly varying voluntary contractions in humans. There was a lower frequency at derecruitment in almost all motor neurons (83 of 86 motor neurons; mean = 3.35 Hz). Thus intrinsic mechanisms play an important role for the lower frequencies at derecruitment. This was independent of whether the current injection had activated persistent inward current (PIC; plateau potentials, secondary range firing). It was found that a preceding spike train could prolong the AHP duration following a subsequent spike. The lower rate at derecruitment matches the prolongation of the AHP. However, a quantitative comparison between the lowest firing frequency and AHP duration for individual motor neurons reveal that the predicted lowest firing frequency does not match the absolute AHP duration; the lowest frequency is lower than that predicted from AHP duration in fast motoneurons and higher than expected in slow motoneurons. It is suggested that these deviations are explained by the presence of synaptic noise as well as recruitment of PICs below firing threshold. Thus synaptic noise may allow spike discharge even after the end of the AHP in “fast” motor neurons, whereas synaptic noise and PICs below spike threshold tend to give higher minimum firing frequencies in “slow” motor neurons than predicted from AHP duration.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3