Evidence for Plateau Potentials in Tail Motoneurons of Awake Chronic Spinal Rats With Spasticity

Author:

Bennett David J.1,Li Yunru1,Harvey Philip J.1,Gorassini Monica1

Affiliation:

1. Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2S2, Canada

Abstract

Motor units of segmental tail muscles were recorded in awake rats following acute (1–2 days) and chronic (>30 days) sacral spinal cord transection to determine whether plateau potentials contributed to sustained motor-unit discharges after injury. This study was motivated by a companion in vitro study that indicated that after chronic spinal cord injury, the tail motoneurons of the sacrocaudal spinal cord exhibit persistent inward currents ( I PIC) that cause intrinsically sustained depolarizations ( plateau potentials) and firing ( self-sustained firing). Importantly, in this companion study, the plateaus were fully activated at recruitment and subsequently helped sustain the firing without causing abrupt nonlinearities in firing. That is, after recruitment and plateau activation, the firing rate was modulated relatively linearly with injected current and therefore provided a good approximation of the input to the motoneuron despite the plateau. Thus in the present study, pairs of motor units were recorded simultaneously from the same muscle, and the firing rate ( F) of the lowest-threshold unit (control unit) was used as an estimate of the synaptic input to both units. We then examined whether firing of the higher-threshold unit (test unit) was intrinsically maintained by a plateau, by determining whether more synaptic input was required to recruit the test unit than to maintain its firing. The difference in the estimated synaptic input at recruitment and de-recruitment of the test unit (i.e., change in control unit rate, Δ F) was taken as an estimate of the plateau current ( I PIC) that intrinsically sustained the firing. Slowly graded manual skin stimulation was used to recruit and then de-recruit the units. The test unit was recruited when the control unit rate was on average 17.8 and 18.9 Hz in acute and chronic spinal rats, respectively. In chronic spinal rats, the test unit was de-recruited when the control unit rate (re: estimated synaptic input) was significantly reduced, compared with at recruitment (Δ F = −5.5 Hz), and thus a plateau participated in maintaining the firing. In the lowest-threshold motor units, even a brief stimulation triggered very long-lasting firing (seconds to hours; self-sustained firing). Higher-threshold units required continuous stimulation (or a spontaneous spasm) to cause firing, but again more synaptic input was needed to recruit the unit than to maintain its firing (i.e., plateau present). In contrast, in acute spinal rats, the stimulation did not usually trigger sustained motor-unit firing that could be attributed to plateaus because Δ F was not significantly different from zero. These results indicate that plateaus play an important role in sustaining motor-unit firing in awake chronic spinal rats and thus contribute to the hyperreflexia and hypertonus associated with chronic injury.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3