Affiliation:
1. Departments of Neurobiology, Pharmacology, and Physiology and of
2. Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, Illinois 60637
Abstract
Controlled currents were used to study possible functions of voltage-sensitive, outwardly rectifying conductances. Results were interpreted with linearized Hodgkin-Huxley theory. Because of their more hyperpolarized resting potentials and lower impedances, type I hair cells require larger currents to be depolarized to a given voltage than do type II hair cells. “Fast” type II cells, so-called because of the fast activation of their outward currents, show slightly underdamped responses to current steps with resonant (best) frequencies of 40–85 Hz, well above the bandwidth of natural head movements. Reflecting their slower activation kinetics, type I and “slow” type II cells have best frequencies of 15–30 Hz and are poorly tuned, being critically damped or overdamped. Linearized theory identified the factors responsible for tuning quality. Our fast type II hair cells show only modestly underdamped responses because their steady-state I-V curves are not particularly steep. The even poorer tuning of our type I and slow type II cells can be attributed to their slow activation kinetics and large conductances. To study how ionic currents shape response dynamics, we superimposed sinusoidal currents of 0.1–100 Hz on a small depolarizing steady current intended to simulate resting conditions in vivo. The steady current resulted in a slow inactivation, most pronounced in fast type II cells and least pronounced in type I cells. Because of inactivation, fast type II cells have nearly passive response dynamics with low-frequency gains of 500–1,000 MΩ. In contrast, type I and slow type II cells show active components in the vestibular bandwidth and low-frequency gains of 20–100 and 100–500 MΩ, respectively. As there are no differences in the responses to sinusoidal currents for fast type II cells from the torus and planum, voltage-sensitive currents are unlikely to be responsible for the large differences in gains and response dynamics of afferents innervating these two regions of the peripheral zone. The low impedances and active components of type I cells may be related to the low gains and modestly phasic response dynamics of calyx-bearing afferents.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献