Comparative transduction mechanisms of hair cells in the bullfrog utriculus. I. Responses to intracellular current

Author:

Baird R. A.1

Affiliation:

1. Department of Neuro-otology, Good Samaritan Hospital and MedicalCenter, Portland, Oregon 97209.

Abstract

1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The voltage responses of selected hair cells to intracellular current steps and sinusoids in the frequency range of 0.5-200 Hz were studied with conventional intracellular recordings. 2. The utricular macula is divided into medial and lateral parts by the striola, a 75- to 100-microns zone that runs for nearly the entire length of the sensory macula near its lateral border. The striola is distinguished from flanking extrastriolar regions by the elevated height of its apical surface and the wider spacing of its hair cells. A line dividing hair cells of opposing polarities, located near the lateral border of the striola, separates it into medial and lateral parts. On average, the striola consists of five to seven medial and two to three lateral rows of hair cells. 3. Utricular hair cells were classified into four types on the basis of hair bundle morphology. Type B cells, the predominant hair cell type in the utricular macula, are small cells with short sterocilia and kinocilia 2-6 times as long as their longest stereocilia. These hair cells were found throughout the extrastriola and, more rarely, in the striolar region. Three other hair cell types were restricted to the striolar region. Type C cells, found primarily in the outer striolar rows, resemble enlarged versions of Type B hair cells. Type F cells have kinocilia approximately equal in length to their longest stereocilia and are restricted to the middle striolar rows. Type E cells, found only in the innermost striolar rows, have short kinocilia with prominent kinociliary bulbs. 4. The resting potential of 99 hair cells was -58.0 +/- 7.6 (SD) mV and did not vary significantly for hair cells in differing macular locations or with differing hair bundle morphology. The RN of hair cells, measured from the voltage response to current steps, varied from 200 to > 2,000 M omega and was not well correlated with cell size. On average, Type B cells had the highest RN, followed by Type F, Type E, and Type C cells. When normalized to their surface area, the membrane resistance of hair cells ranged from < 1,000 to > 10,000 k omega.cm2. The input capacitance of hair cells ranged from < 3 to > 15 pA, corresponding on average to a membrane capacitance of 0.8 +/- 0.2 pA/cm2.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3