Quantitative Comparison Between Functional Imaging and Single-Unit Spiking in Rat Somatosensory Cortex

Author:

Masino Susan A.1

Affiliation:

1. Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262

Abstract

The profile of activity across rat somatosensory cortex on stimulation of a single whisker was examined using both intrinsic signal imaging and electrophysiological recording. In the same animals, under sodium pentobarbital anesthesia, the intrinsic signal response to a 5-Hz stimulation of whisker C2 was recorded through a thinned skull. Subsequently, the thinned skull was removed, and individual cortical neurons were recorded at multiple locations and in all cortical layers in response to the same whisker stimulation paradigm. The amplitude of the evoked response obtained with both techniques was quantified across the cortical surface with respect to distance (≤1.6 mm) from the peak intrinsic signal activity. Cortical neurons were rated as having a significant or nonsignificant whisker-evoked response as compared with a baseline period of spontaneous firing; a minority of neurons exhibited a small but significant increase in neuronal spiking even at long distances (>1.6 mm) from the optically determined peak of activity. Overall, this analysis shows a significant correlation between the two techniques in terms of the profile of evoked activity across the cortical surface. Furthermore, this data set affords a detailed and quantitative comparison between the two activity-dependent techniques—one measuring an intrinsic decrease in light reflectance based largely on metabolic changes and one measuring neuronal firing patterns. Studies such as this, comparing directly between imaging and detailed electrophysiology, may influence the interpretation of the extent of the activated area as assessed with in vivo functional imaging techniques.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3