Affiliation:
1. Centre for Research in Neuroscience, Montreal General Hospital Research Institute; and Department of Neurology and Neurosurgery and Department of Biology, McGill University, Montreal, Quebec H3G 1A4, Canada
Abstract
Sub-threshold, motoneuron-evoked synaptic activity was observed in zebrafish embryonic red (ER) and white (EW) muscle fibers paralyzed with a dose of d-tubocurarine insufficient to abolish synaptic activity to determine whether muscle activation was coordinated to produce the undulating body movements required for locomotion. Paired whole-cell recordings revealed a synaptic drive that alternated between ipsilateral and contralateral myotomes and exhibited a rostral-caudal delay in timing appropriate for swimming. Both ER and EW muscle were activated during fictive swimming. However, at the fastest fictive swimming rates, ER fibers were de-recruited, whereas they could be active in isolation of EW fibers at the slowest fictive swimming rates. Prior to hatching, fictive swimming was preceded by a lower frequency, more robust and rhythmic synaptic drive resembling the “coiling” behavior of fish embryos. The motor activity observed in paralyzed zebrafish closely resembled the swimming and coiling behaviors observed in these developing fishes. At the early developmental stages examined in this study, myotomal muscle recruitment and coordination were similar to that observed in adult fishes during swimming. Our results indicate that the patterned activation of myotomal muscle is set from the onset of development.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献