PERK inhibition in zebrafish mimics human Wolcott-Rallison syndrome phenotypes

Author:

Almeida Liliana M.ORCID,Lima Leonor PereiraORCID,Oliveira Nuno A. S.,Silva Rui F. O.ORCID,Sousa BrunoORCID,Bessa JoséORCID,Pinho Brígida R.ORCID,Oliveira Jorge M. A.ORCID

Abstract

AbstractWolcott-Rallison Syndrome (WRS) is the most common cause of permanent neonatal diabetes mellitus among consanguineous families. The diabetes associated with WRS is non-autoimmune, insulin-requiring and associated with skeletal dysplasia and growth retardation. The therapeutic options for WRS patients rely on permanent insulin pumping or on invasive transplants of liver and pancreas. WRS has a well identified genetic cause: loss-of-function mutations in the gene coding for an endoplasmic reticulum kinase named PERK (protein kinase R-like ER kinase). Currently, WRS research is facilitated by cellular and rodent models with PERK ablation. While these models have unique strengths, cellular models incompletely replicate the organ/system-level complexity of WRS, and rodents have limited scalability for efficiently screening potential therapeutics. To address these challenges, we developed a new in vivo model of WRS by pharmacologically inhibiting PERK in zebrafish. This small vertebrate displays high fecundity, rapid development of organ systems and is amenable to highly efficient in vivo drug testing. PERK inhibition in zebrafish produced typical WRS phenotypes such as glucose dysregulation, skeletal defects, and impaired development. PERK inhibition in zebrafish also produced broad-spectrum WRS phenotypes such as impaired neuromuscular function, compromised cardiac function and muscular integrity. These results show that zebrafish holds potential as a versatile model to study WRS mechanisms and contribute to the identification of promising therapeutic options for WRS.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3