Affiliation:
1. Department of Reproductive Biology and Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
Abstract
Human cervical epithelial cells express mRNA for the nitric oxide (NO) synthase (NOS) isoforms ecNOS, bNOS, and iNOS and release NO into the extracellular medium. NG-nitro-l-arginine methyl ester (l-NAME), an NOS inhibitor, and Hb, an NO scavenger, decreased paracellular permeability; in contrast, the NO donors sodium nitroprusside (SNP) and N-(ethoxycarbonyl)-3-(4-morpholinyl)sydnonimine increased paracellular permeability across cultured human cervical epithelia on filters, suggesting that NO increases cervical paracellular permeability. The objective of the study was to understand the mechanisms of NO action on cervical paracellular permeability. 8-Bromo-cGMP (8-BrcGMP) also increased permeability, and the effect was blocked by KT-5823 (a blocker of cGMP-dependent protein kinase), but not by LY-83583 (a blocker of guanylate cyclase). In contrast, LY-83583 and KT-5823 blocked the SNP-induced increase in permeability. Treatment with SNP increased cellular cGMP, and the effect was blocked by Hb and LY-83583, but not by KT-5823. Neither SNP nor 8-BrcGMP had modulated cervical cation selectivity. In contrast, both agents increased fluorescence from fura 2-loaded cells in the Ca2+-insensitive wavelengths, indicating that SNP and 8-BrcGMP stimulate a decrease in cell size and in the resistance of the lateral intercellular space. Neither SNP nor 8-BrcGMP had an effect on total cellular actin, but both agents increased the fraction of G-actin. Hb blocked the SNP-induced increase in G-actin, and KT-5823 blocked the 8-BrcGMP-induced increase in G-actin. On the basis of these results, it is suggested that NO acts on guanylate cyclase and stimulates an increase in cGMP; cGMP, acting via cGMP-dependent protein kinase, shifts actin steady-state toward G-actin; this fragments the cytoskeleton and renders cells more sensitive to decreases in cell size and resistance of the lateral intercellular space and, hence, to increases in permeability. These results may be important for understanding NO regulation of transcervical paracellular permeability and secretion of cervical mucus in the woman.
Publisher
American Physiological Society
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献