Estrogen modulates paracellular permeability of human endothelial cells by eNOS- and iNOS-related mechanisms

Author:

Cho Michael M.1,Ziats Nicholas P.2,Pal Dipika1,Utian Wulf H.1,Gorodeski George I.13

Affiliation:

1. Departments of Reproductive Biology,

2. Pathology, and

3. Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106

Abstract

Estradiol had a biphasic effect on permeability across cultures of human umbilical vein endothelial cells (HUVEC): at nanomolar concentrations it decreased the HUVEC culture permeability, but at micromolar concentrations it increased the permeability. The objective of the present study was to test the hypothesis that the changes in permeability were mediated by nitric oxide (NO)-related mechanisms. The results revealed dual modulation of endothelial paracellular permeability by estrogen. 1) An endothelial NO synthase (eNOS)-, NO-, and cGMP-related, Ca2+-dependent decrease in permeability was activated by nanomolar concentrations of estradiol, resulting in enhanced Clinflux, increased cell size, and increases in the resistance of the lateral intercellular space ( RLIS) and in the resistance of the tight junctions ( RTJ); these effects appeared to be limited by the ability of cells to generate cGMP in response to NO. 2) An inducible NO synthase (iNOS)- and NO-related, Ca2+-independent increase in permeability was activated by micromolar concentrations of estradiol, resulting in enhanced Clefflux, decreased cell size, and decreased RLISand RTJ. We conclude that the net effect on transendothelial permeability across HUVEC depends on the relative contributions of each of these two systems to the total paracellular resistance.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3