Affiliation:
1. Department of Dermatology, Yantai Yu Huang Ding Hospital, Yantai, People’s Republic of China
2. Department of Dermatology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
Abstract
Metastatic cutaneous squamous cell carcinoma (CSCC) is a major cause of death associated with nonmelanoma skin cancer. The involvement of homeobox B7 ( HOXB7) in cancers has been reported. Thus, the current study intends to explore the effect of HOXB7 on CSCC and its relationship with the Wnt/β-catenin signaling pathway. Initially, microarray-based gene expression profiling of CSCC was performed, and HOXB7 was identified as an upregulated gene based on the microarray data of GSE66359 . Following this, the experimental results indicated that HOXB7 and β-catenin formed a composite, demonstrating that endogenous HOXB7 binds to β-catenin. Subsequently, CSCC cells were treated with siRNA against HOXB7 or an inhibitor of the Wnt/β-catenin signaling pathway to analyze any underlying regulatory mechanism of HOXB7 on the CSCC cells. Tumor growth involving xenografts in nude mice was also observed so as to explore whether or not HOXB7 could regulate subcutaneous tumor growth through in vivo culturing. To investigate the potential effects of HOXB7 on the Wnt/β-catenin signaling pathway, we determined the expression of HOXB7 and downstream genes of the Wnt/β-catenin signaling pathway. Notably, siRNA-mediated knockdown of HOXB7 inhibited the activation of the Wnt/β-catenin signaling pathway, thereby impeding the progression of cell viability, migration, and invasion as well as of the tumor growth, although contrarily facilitating cell apoptosis. Taken together, silencing of the HOXB7 has the mechanism of inactivating the Wnt/β-catenin signaling pathway, thereby accelerating cell apoptosis and suppressing cell migration and invasion in CSCC, which could provide a candidate target for the CSCC treatment.
Funder
Clinical Medical Plus X Project of Department of Medicine, Qingdao University
Publisher
American Physiological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献