Author:
Osawa Y.,Lee H. T.,Hirshman C. A.,Xu D.,Emala C. W.
Abstract
LPS is known to modulate macrophage responses during sepsis, including cytokine release, phagocytosis, and proliferation. Although agents that elevate cAMP reverse LPS-induced macrophage functions, whether LPS itself modulates cAMP and whether LPS-induced decreases in proliferation are modulated via a cAMP-dependent pathway are not known. Murine macrophages (RAW264.7 cells) were treated with LPS in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, CaM, Giproteins, and NF-κB translocation or transcription/translation. LPS effects on CaMKII phosphorylation and the expression of relevant adenylyl cyclase (AC) isoforms were measured. LPS caused a significant dose (5–10,000 ng/ml)- and time (1–8 h)-dependent increase in forskolin-stimulated AC activity that was abrogated by pretreatment with SN50 (an NF-κB inhibitor), actinomycin D, or cycloheximide, indicating that the effect is mediated via NF-κB-dependent transcription and new protein synthesis. Furthermore, LPS decreased the phosphorylation state of CaMKII, and pretreatment with a CaM antagonist attenuated the LPS-induced sensitization of AC. LPS, cAMP, or PKA activation each independently decreased macrophage proliferation. However, inhibition of NF-κB had no effect on LPS-induced decreased proliferation, indicating that LPS-induced decreased macrophage proliferation can proceed via PKA-independent signaling pathways. Taken together, these findings indicate that LPS induces sensitization of AC activity by augmenting the stimulatory effect of CaM and attenuating the inhibitory effect of CaMKII on isoforms of AC that are CaMK sensitive.
Publisher
American Physiological Society
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献