Lipopolysaccharide-induced sensitization of adenylyl cyclase activity in murine macrophages

Author:

Osawa Y.,Lee H. T.,Hirshman C. A.,Xu D.,Emala C. W.

Abstract

LPS is known to modulate macrophage responses during sepsis, including cytokine release, phagocytosis, and proliferation. Although agents that elevate cAMP reverse LPS-induced macrophage functions, whether LPS itself modulates cAMP and whether LPS-induced decreases in proliferation are modulated via a cAMP-dependent pathway are not known. Murine macrophages (RAW264.7 cells) were treated with LPS in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, CaM, Giproteins, and NF-κB translocation or transcription/translation. LPS effects on CaMKII phosphorylation and the expression of relevant adenylyl cyclase (AC) isoforms were measured. LPS caused a significant dose (5–10,000 ng/ml)- and time (1–8 h)-dependent increase in forskolin-stimulated AC activity that was abrogated by pretreatment with SN50 (an NF-κB inhibitor), actinomycin D, or cycloheximide, indicating that the effect is mediated via NF-κB-dependent transcription and new protein synthesis. Furthermore, LPS decreased the phosphorylation state of CaMKII, and pretreatment with a CaM antagonist attenuated the LPS-induced sensitization of AC. LPS, cAMP, or PKA activation each independently decreased macrophage proliferation. However, inhibition of NF-κB had no effect on LPS-induced decreased proliferation, indicating that LPS-induced decreased macrophage proliferation can proceed via PKA-independent signaling pathways. Taken together, these findings indicate that LPS induces sensitization of AC activity by augmenting the stimulatory effect of CaM and attenuating the inhibitory effect of CaMKII on isoforms of AC that are CaMK sensitive.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3